

Neutrino Factory and Beta Beam

Experiments and Development

Michael S. Zisman

CENTER FOR BEAM PHYSICS

Muon Collaboration Meeting-Riverside January 31, 2003

Outline

- Introduction
- Previous Neutrino Factory studies
- · Beta beams
- · Goals for this Study
- · Organizational meeting
 - Neutrino Factory discussion
 - Beta beams
- Summary

Introduction

- Invitation to become Working Group Co-leader was very recent
 - ideas are in the very early stages of formation
- For Neutrino Factory design and R&D, strong and active groups already exist
 - Neutrino Factory and Muon Collider Collaboration (U.S.)
 - European Neutrino Group (EU)
 - Japanese Neutrino Group (Japan)
- Work on beta beams is happening mainly at CERN
 - necessarily kept at a low level due to CERN priorities

Introduction

- MC has been involved in two end-to-end Feasibility Studies of a Neutrino Factory complex
 - we have some experience in organizing such endeavors
- Possibility of doing "World" Neutrino Factory Feasibility Study is currently under discussion
 - this would involve U.S., EU, and Japan
 - o driving force at present is mainly UK scientists
 - funding being sought from Brussels for this work
- "Feasibility Study model" is what we have in mind for this Working Group

Introduction

Neutrino Factory comprises these sections

- Proton Driver(primary beam on production target)
- Target and Capture
 (create π's; capture into decay channel)
- Phase Rotation (reduce △E of bunch)
- Cooling
 (reduce transverse emittance of beam)
 ⇒Muon Ionization Cooling Experiment
- Acceleration (130 MeV → 20-50 GeV with RLAs)
- Storage Ring (store muon beam for ≈500 turns; optimize yield with long straight section aimed in desired direction)

Not an easy project, but no fundamental problems found

- Study I (1999-2000) instigated by the Fermilab Director
 - MC invited to participate
 - basic organization and decision-making done by Fermilab editors (Holtkamp and Finley)
- Focus on feasibility
 - first attempt to specify a Neutrino Factory from end to end
 - approach: base design on (reasonably) well-understood technologies
 - no attempt made to optimize either costs or overall performance
- · Proper approach at that time, as feasibility itself was most at issue
- Led to predictable result: feasibility established, performance poor, and costs relatively high
- In large measure results were generic; not dominated by site-specific parameters

- Study II (2000-2001) done as collaboration between MC and BNL as sponsoring laboratory
 - co-led by 5. Ozaki (BNL), R. Palmer (BNL-MC), M. Zisman (MC)
- Goal: maintain convincing feasibility, improve performance substantially
 - minimizing costs was again given lower priority
- · Results:
 - performance 6x that of Study I
 - \circ 1.2 x 10²⁰ vs. 2 x 10¹⁹ v_e per year (10⁷ s) per MW
 - cost about 75% of Study I
 - mainly due to using 20 GeV rather than 50 GeV, saving one RLA
 - performance scalable with proton power, if target does not limit this parameter
 - should be able to operate at 4 MW

- Lessons learned from the two Studies
 - necessary to optimize the "front end" (decay, bunching, phase rotation, cooling) as one system to get high performance
 - necessary to simulate entire concept before starting detailed engineering (self-consistent solution)
 - necessary to work as partners with engineers to converge on buildable design
 - facility as conceived was costly, O(\$2B)
 - increasing proton driver power is cost-effective way to get higher performance
 - o it also tends to mesh well with other programs, e.g. Superbeams

- For Neutrino Factory, we have already studied those portions of "design space" representing
 - low performance, high cost
 - high performance, high cost
- · What's left?
 - high performance, optimized cost
 - o note that I resisted temptation to say "low" cost
- Based on previous work, we have some ideas where to begin:
 - replace induction linacs with RF bunching and phase rotation scheme
 - replace RLA with FFAG ring or very fast cycling synchrotron
 - examine trade-off between amount of cooling and acceleration system/storage ring acceptance
 - o and between beam intensity and detector size

- These changes could markedly reduce cost of the facility
 - RF bunching and phase rotation section shorter than induction linac version, and uses less expensive components
 - original scheme took 25% of total cost
 - new scheme can keep both μ^- and μ^+ simultaneously
 - if we can take advantage of this feature
 - RLAs also represent a major cost in the present Neutrino Factory design (23%)
 - large aperture FFAG magnets accommodate the large energy change per turn without requiring separate arcs
 - avoids large aperture splitter-recombiner magnets
 - increased acceptance downstream may allow reduction in required cooling (20% of facility cost)
 - Note that "replacements" will not be free, however

Beta Beams

- Beta beam work presently centered in Europe (CERN)
 - information here abstracted from talk by J. Bouchez at NuFact03
 - based on acceleration and storage of light beta-unstable isotopes
 - use ${}^{6}\text{He for }\beta^{-}(t_{1/2}=0.8 \text{ s})$
 - use ¹⁸Ne for β^{+} ($t_{1/2} = 1.7 \text{ s}$)
- Current scheme involves SPL, ISOL target, pulsed ECR source, 50 MeV linac, pulsed synchrotron (300 MeV/u), PS (to γ = 9.2), SPS (to γ ≈ 100), decay ring with long straight section pointed toward detector

Beta Beams

- There are many technical challenges of beta beams that would benefit from further study
 - production target and ion source to give required intensity
 - multiple targets required for 18 Ne intensity of 1.3×10^{13}
 - pulsed ECR source to give bunch train of fully stripped ions
 - space-charge blowup and radiation losses in various rings
 - stacking multiple turns in decay ring without cooling the beam
- Generalizing the scenario beyond CERN-specific design would also be of interest

Goals for This Study

- For Neutrino Factory: examine approaches to reduce overall cost without sacrificing performance
 - then carry out simulations of updated front end and demonstrate acceptable performance
 - carry simulations through remainder of Study II channel if time permits
 - explore possibility of staged approach, beginning with Superbeam
- If successful, this would provide a good strawman design for a subsequent World Design Study

Goals for This Study

- · For beta beams, seems prudent to aspire to more modest goals
 - assess progress of CERN design
 - o perhaps attend design meetings in Europe
 - identify and understand outstanding technical issues and time scale for dealing with them
- Experts from nuclear physics facilities or projects, e.g. RIA, have the right expertise
 - if we can get a few volunteers we can learn something here

Organizational Meeting

Machine discussion was attended by:

```
Daniel Galehouse (U. Akron)
David Finley (Fermilab)
Steve Geer (Fermilab)
Jim Norem (ANL)
Bob Palmer (BNL)
Petros Rapidis (Fermilab)
Yağmur Torun (IIT)
Mike Zisman (LBNL)
```

· We have recruited more participants at this meeting

- Palmer is already hard at work to improve on Study II
 - cost drivers (each ≈25%) are known to be
 - bunching and phase rotation
 - cooling
 - acceleration
- · Palmer has begun to look at the first two, with encouraging results
 - phase rotation and bunching
 - o applied Neuffer scheme with RF bunching and phase rotation
 - RF ranges from 330 MHz to 201 MHz along channel
 - presently unrealistic smooth variation of RF; need to go to "stepped" scheme with, say 10 steps

- Bottom line
 - can get better performance than Study II with same cooling channel or same performance with shorter channel

- · Still lots of variables to adjust and optimize
 - need to add some realism to the simulation
 - window thicknesses and materials, etc.
 - need to decide how to handle both $\mu^{\scriptscriptstyle -}$ and $\mu^{\scriptscriptstyle +}$
 - is it a blessing or a curse?
- We think it is prudent to focus mainly on "front-end" system, and cover acceleration only as time permits

- The plan
 - since completion of Study II, MC has done a lot more work on optimizing pieces of a Neutrino Factory
 - we plan to put this all together and see if we are indeed on track for a more cost-optimized design
- · In particular, we hope for
 - improvements in collector and decay channel
 - updated phase rotation and bunching system
 - more optimal cooling channel
- If possible, we would like to revisit the preacceleration section, between cooling channel and main accelerating system
 - we think we know how to make acceleration acceptance bigger
 - need to do the same here for it to matter

- Proposed tasks from Fernow for NF Study 2A
 - baseline configuration
 - decay region
 - fix dB' at start
 - periodic B_s
 - o adiabatic buncher
 - periodic B_s
 - discrete frequency implementation
 - RF windows (R=30 cm, G<12 MV/m)
 - o phase rotation
 - periodic B_s
 - discrete frequency implementation
 - fix dB' at end
 - matching section
 - RF windows (R=30 cm, G=15.25 MV/m)
 - f = 201.25 MHz
 - coating for LiH?

- o precooler
 - RF windows (R=25 cm, G=15.25 MV/m)
 - f = 201.25 MHz
 - coating for LiH?
- studies of alternatives
 - update MARS distribution from target (Nicholai, Harold?, Kevin?)
 - target geometry
 - field over target region
 - get new pion collection field profile (Kevin)
 adjust Be window thickness in phase rotation

 - o design shorter phase rotator (bave)
 - o replace LiH with Li, Be, ... in match and precooler
 - lower RF gradients
 - o radius in precooler
- Geant confirmation
 - final design only (Amit)

Beta Beams

- Try to assess technical challenges of beta beams
 - production target and ion source to give required intensity
 - space-charge blowup and radiation losses in various rings
 - stacking multiple turns in decay ring without cooling the beam
- Generalizing the scenario to a U.S.-based version would be of interest
 - there is some talk now about higher energy beams having better physics potential
- · As noted, for beta beams, we will aspire to modest goals
 - assess progress of CERN design
 - identify and understand outstanding technical issues and time scale for dealing with them
- · Recruit experts from nuclear physics facilities or projects, e.g. RIA
 - have a volunteer (Finley) to look into these matters

Summary

- Have a plan how to proceed on Neutrino Factory and Beta Beam study
- Anticipate having one or more "mid-course" in-person meetings
 - next WG meeting scheduled for March 3-4, 2004 at ANL
 - http://www.neutrinooscillation.org/studyaps/neutrinofactoryworkshop.html
 - we may also wish to meet in conjunction with Superbeams group
 - there are technology issues (as well as physics) in common
 - proton driver and target considerations
- We think it is important that the case for continued accelerator R&D in support of the physics program be part of the roadmap
- Succeeding in this endeavor will improve the odds of someday having a powerful neutrino beam...something we can use to do good science!
- For this study, we have a lot to do, and not much time to do it
 ...let the race begin!